利用Python进行数据分析 PDF

编辑推荐

《利用Python进行数据分析》适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。将IPython这个交互式Shell作为你的首要开发环境。

名人推荐

“科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法。本书在未来几年里肯定会成为Python领域中技术计算的权威指南。”
——Fernando Pérez加州大学伯克利分校研究科学家,IPython的创始人之一

媒体推荐

“O’Reilly Radar博客有口皆碑。”
——Wired
“O’Reilly凭借一系列(真希望当初我也想到了)非凡想法建立了数百万美元的业务。”
——Business 2.0
“O’Reilly Conference是聚集关键思想领袖的绝对典范。”
——CRN
“一本O’Reilly的书就代表一个有用、有前途、需要学习的主题。”
——Irish Times
“Tim是位特立独行的商人,他不光放眼于最长远、最广阔的视野并且切实地按照Yogi Berra的建议去做了:‘如果你在路上遇到岔路口,走小路(岔路)。’回顾过去Tim似乎每一次都选择了小路,而且有几次都是一闪即逝的机会,尽管大路也不错。”
——Linux Journal

作者简介

Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社区公认的权威人物之一。开发了用于数据分析的著名开源Python库——pandas,广获用户好评。在创建Lambda Foundry(一家致力于企业数据分析的公司)之前,他曾是AQR Capital Management的定量分析师。

目录

前言1
第1章准备工作5
本书主要内容5
为什么要使用Python进行数据分析6
重要的Python库7
安装和设置10
社区和研讨会16
使用本书16
致谢18
第2章引言20
来自bit.ly的1.usa.gov数据21
MovieLens1M数据集29
1880—2010年间全美婴儿姓名35
小结及展望47
第3章IPython:一种交互式计算和开发环境48
IPython基础49
内省51
使用命令历史60
与操作系统交互63
软件开发工具66
IPythonHTMLNotebook75
利用IPython提高代码开发效率的几点提示77
高级IPython功能79
致谢81
第4章NumPy基础:数组和矢量计算82
NumPy的ndarray:一种多维数组对象83
通用函数:快速的元素级数组函数98
利用数组进行数据处理100
用于数组的文件输入输出107
线性代数109
随机数生成111
范例:随机漫步112
第5章pandas入门115
pandas的数据结构介绍116
基本功能126
汇总和计算描述统计142
处理缺失数据148
层次化索引153
其他有关pandas的话题158
第6章数据加载、存储与文件格式162
读写文本格式的数据162
二进制数据格式179
使用HTML和WebAPI181
使用数据库182
第7章数据规整化:清理、转换、合并、重塑186
合并数据集186
重塑和轴向旋转200
数据转换204
字符串操作217
示例:USDA食品数据库224
第8章绘图和可视化231
matplotlibAPI入门231
pandas中的绘图函数244
绘制地图:图形化显示海地地震危机数据254
Python图形化工具生态系统260
第9章数据聚合与分组运算263
GroupBy技术264
数据聚合271
分组级运算和转换276
透视表和交叉表288
示例:2012联邦选举委员会数据库291
第10章时间序列302
日期和时间数据类型及工具303
时间序列基础307
日期的范围、频率以及移动311
时区处理317
时期及其算术运算322
重采样及频率转换327
时间序列绘图334
移动窗口函数337
性能和内存使用方面的注意事项342
第11章金融和经济数据应用344
数据规整化方面的话题344
分组变换和分析355
更多示例应用361
第12章NumPy高级应用368
ndarray对象的内部机理368
高级数组操作370
广播378
ufunc高级应用383
结构化和记录式数组386
更多有关排序的话题388
NumPy的matrix类393
高级数组输入输出395
性能建议397
附录APython语言精要401

序言

前言
针对科学计算领域的Python开源库生态系统在过去10年中得到了飞速发展。2011年底,我深深地感觉到,由于缺乏集中的学习资源,刚刚接触数据分析和统计应用的Python程序员举步维艰。针对数据分析的关键项目(尤其是NumPy、matplotlib和pandas)已经很成熟了,也就是说,写一本专门介绍它们的图书貌似不会很快过时。因此,我下定决心要开始这样的一个写作项目。我在2007年刚开始用Python进行数据分析工作时就希望能够得到这样一本书。希望你也能觉得本书有用,同时也希望你能将书中介绍的那些工具高效地运用到实际工作中去。
本书的约定
本书使用了以下排版约定:
斜体(Italic)
用于新术语、URL、电子邮件地址、文件名与文件扩展名。
等宽字体(Constant width)
用于表明程序清单,以及在段落中引用的程序中的元素,如变量、函数名、数据库、数据类型、环境变量、语句、关键字等。
等宽粗体(Constant width bold)
用于表明命令,或者需要读者逐字输入的文本内容。
等宽斜体(Constant width italic)
用于表示需要使用用户提供的值或者由上下文决定的值来替代的文本内容。
注意: 代表一个技巧、建议或一般性说明。
警告: 代表一个警告或注意事项。
示例代码的使用
本书提供代码的目的是帮你快速完成工作。一般情况下,你可以在你的程序或文档中使用本书中的代码,而不必取得我们的许可,除非你想复制书中很大一部分代码。例如,你在编写程序时,用到了本书中的几个代码片段,这不必取得我们的许可。但若将O扲eilly图书中的代码制作成光盘并进行出售或传播,则需获得我们的许可。引用示例代码或书中内容来解答问题无需许可。将书中很大一部分的示例代码用于你个人的产品文档,这需要我们的许可。
如果你引用了本书的内容并标明版权归属声明,我们对此表示感谢,但这不是必需的。版权归属声明通常包括:标题、作者、出版社和ISBN号,例如:“Python for Data Analysis by William Wesley McKinney (O’eilly). Copyright 2013 William Wesley McKinney, 978-1-449-31979-3”。
如果你认为你对示例代码的使用已经超出上述范围,或者你对是否需要获得示例代码的授权还不清楚,请随时联系我们:permissions@oreilly.com。
联系我们
有关本书的任何建议和疑问,可以通过下列方式与我们取得联系:
美国:
O’eilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
中国:
北京市西城区西直门南大街2号成铭大厦C座807室(100035)
奥莱利技术咨询(北京)有限公司
我们会在本书的网页中列出勘误表、示例和其他信息。可以通过http://oreil.ly/Python_for_Data_Analysis访问该页面。
要评论或询问本书的技术问题,请发送电子邮件到:
bookquestions@oreilly.com
想了解关于O’eilly图书、课程、会议和新闻的更多信息,请访问以下网站:
http://www.oreilly.com.cn
http://www.oreilly.com
还可以通过以下网站关注我们:
我们在Facebook上的主页:http://facebook.com/oreilly
我们在Twitter上的主页:http://twitter.com/oreillymedia
我们在YouTube上的主页:http://www.youtube.com/oreillymedia

文摘

第1章
准备工作
本书主要内容
本书讲的是利用Python进行数据控制、处理、整理、分析等方面的具体细节和基本要点。同时,它也是利用Python进行科学计算的实用指南(专门针对数据密集型应用)。本书重点介绍了用于高效解决各种数据分析问题的Python语言和库。本书没有阐述如何利用Python实现具体的分析方法。
当书中出现“数据”时,究竟指的是什么呢?主要指的是结构化数据(structured data),这个故意含糊其辞的术语代指了所有通用格式的数据,例如:
多维数组(矩阵)。
表格型数据,其中各列可能是不同的类型(字符串、数值、日期等)。比如保存在关系型数据库中或以制表符/逗号为分隔符的文本文件中的那些数据。
通过关键列(对于SQL用户而言,就是主键和外键)相互联系的多个表。
间隔平均或不平均的时间序列。
这绝不是一个完整的列表。大部分数据集都能被转化为更加适合分析和建模的结构化形式,虽然有时这并不是很明显。如果不行的话,也可以将数据集的特征提取为某种结构化形式。例如,一组新闻文章可以被处理为一张词频表,而这张词频表就可以用于情感分析。
大部分电子表格软件(比如Microsoft Excel,它可能是世界上使用最广泛的数据分析工具了)的用户不会对此类数据感到陌生。
为什么要使用Python进行数据分析
许许多多的人(包括我自己)都很容易爱上Python这门语言。自从1991年诞生以来,Python现在已经成为最受欢迎的动态编程语言之一,其他还有Perl、Ruby等。由于拥有大量的Web框架(比如Rails(Ruby)和Django(Python)),最近几年非常流行使用Python和Ruby进行网站建设工作。这些语言常被称作脚本(scripting)语言,因为它们可以用于编写简短而粗糙的小程序(也就是脚本)。我个人并不喜欢“脚本语言”这个术语,因为它好像在说这些语言无法用于构建严谨的软件。在众多解释型语言中,Python最大的特点是拥有一个巨大而活跃的科学计算(scientific computing)社区。进入21世纪以来,在行业应用和学术研究中采用Python进行科学计算的势头越来越猛。
在数据分析和交互、探索性计算以及数据可视化等方面,Python将不可避免地接近于其他开源和商业的领域特定编程语言/工具,如R、MATLAB、SAS、Stata等。近年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
把Python当做粘合剂
作为一个科学计算平台,Python的成功部分源于其能够轻松地集成C、C++以及Fortran代码。大部分现代计算环境都利用了一些Fortran和C库来实现线性代数、优选、积分、快速傅里叶变换以及其他诸如此类的算法。许多企业和国家实验室也利用Python来“粘合”那些已经用了30多年的遗留软件系统。
大多数软件都是由两部分代码组成的:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”。粘合剂代码的执行时间通常是微不足道的。开发人员的精力几乎都是花在优化计算瓶颈上面的,有时更是直接转用更低级的语言(比如C)。
最近这几年,Cython项目(http://cython.org)已经成为Python领域中创建编译型扩展以及对接C/C++代码的一大途径。
解决“两种语言”问题
很多组织通常都会用一种类似于领域特定的计算语言(如MATLAB和R)对新的想法进行研究、原型构建和测试,然后再将这些想法移植到某个更大的生产系统中去(可能是用Java、C#或C++编写的)。人们逐渐意识到,Python不仅适用于研究和原型构建,同时也适用于构建生产系统。我相信越来越多的企业也会这样看,因为研究人员和工程技术人员使用同一种编程工具将会给企业带来非常显著的组织效益。
为什么不选Python
虽然Python非常适合构建计算密集型科学应用程序以及几乎各种各样的通用系统,但它对于不少应用场景仍然力有不逮。
由于Python是一种解释型编程语言,因此大部分Python代码都要比用编译型语言(比如Java和C++)编写的代码运行慢得多。由于程序员的时间通常都比CPU时间值钱,因此许多人也愿意在这里做一些权衡。但是,在那些要求延迟非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级、更低生产率的语言进行编程也是值得的。
对于高并发、多线程的应用程序而言(尤其是拥有许多计算密集型线程的应用程序),Python并不是一种理想的编程语言。这是因为Python有一个叫做全局解释器锁(Global Interpreter Lock,GIL)的东西,这是一种防止解释器同时执行多条Python字节码指令的机制。有关“为什么会存在GIL”的技术性原因超出了本书的范围,但是就目前来看,GIL并不会在短时间内消失。虽然很多大数据处理应用程序为了能在较短的时间内完成数据集的处理工作都需要运行在计算机集群上,但是仍然有一些情况需要用单进程多线程系统来解决。
这并不是说Python不能执行真正的多线程并行代码,只不过这些代码不能在单个Python进程中执行而已。比如说,Cython项目可以集成OpenMP(一个用于并行计算的C框架)以实现并行处理循环进而大幅度提高数值算法的速度。

 

利用Python进行数据分析  PDF

电子版地址:

https://weidian.com/item.html?itemID=2207614079
微信:K517855150

未经允许不得转载:那个男孩爱着她 » 利用Python进行数据分析 PDF
赞(0)